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Delamination from surface cracks in composite 
materials 
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Some aspects of splitting and delamination of composite materials from surface flaws are 
discussed. The system modelled is one of an elastically homogeneous material containing 
aligned interfaces. This simplified model, although missing some of the details that would be 
associated with elastic inhomogeneity, does permit a discussion of some of the factors that 
govern this type of delamination. 

1. In troduc t ion  
The strength of a number of technologically important 
systems is dependent upon the presence of internal 
interfaces. For example, planes of weakness may 
cause toughening in composite materials by deflecting 
and stopping cracks (Fig. la) [1]. A related problem is 
involved in the technology of electronic packaging; 
the interaction of cracks with the interface between a 
substrate and thin film determines whether decohesion 
occurs (Fig. 1 b) [2]. In general, interfaces may separate 
materials with different elastic properties; the con- 
sequent elastic mismatch effects may then be very 
important [3-5]. However, the effect of an interface in 
an elastically homogeneous system is, in itself, very 
interesting and not completely understood. 

The mechanism of delamination most often con- 
sidered for composites is the one in which differing 
elastic properties between adjacent plies induces 
interlaminar shear and normal stresses near the 
boundaries of a specimen. These stresses cause separ- 
ation of the interface, and delamination proceeds as 
an interlaminar crack that propagates from the edges 
of the specimens [6-9]. This type of delamination is 
completely dependent upon the differing elastic 
properties on either side of the interface. It would not 
occur in a homogeneous system. 

There is another type of delamination which is 
induced by discontinuities in the geometry of the 
sample [10-17] and can occur in homogeneous systems. 
Two particular geometries which appear to be of prac- 
tical importance are illustrated in Fig. 2. Delamina- 
tion can initiate from the tip of a crack that exists 
on the edge (Fig. 2a) [11] or in the middle of  a plane 
(Fig. 2b) [12-14]. This paper presents some results 
from fracture mechanics that are applicable to this 
problem. These results are then used to discuss the 
factors that govern delamination. It is emphasized 
that the details of the problem could be qualitatively 
changed if the materials on either side of the interface 
are different [5, 18-20]. Even when isotropic elasticity 

is assumed for both materials, the problem is consider- 
ably complicated. In particular, a modulus mismatch 
changes the nature of the stress singularity at the crack 
tip both for interface cracks [18-20] and for cracks 
terminating at an interface [20]. These singularities 
may have complex components; the resulting stress 
and displacement fields will have an oscillatory 
nature. In addition, depending upon the combination 
of materials, the real part of the stress singularity can 
have any value between 0 (not singular) and - 1 [20]. 
However, some essential aspects of the delamination 
problem can be studied using the simple system, 
consisting of an elastically homogeneous material 
containing aligned interfaces, discussed here. 

2. Splitting 
The initiation stage of a split is a complex problem 
because it depends upon the geometry of the discon- 
tinuity that causes delamination. A sharp crack will 
behave differently from a blunt notch or hole. In the 
former case there is a singularity in the stress field 
which may initiate delamination; in the latter case 
such a singularity develops only after the delamina- 
tion process has begun. However, it is well recognized 
that both shear and normal stresses are involved 
[17, 21]. 

When the split is more than a few times the length 
of the notch, the problem becomes much better 
defined. Eventually, an asymptotic regime is reached 
in which the stress field at the tip of the delamination 
is independent of its length. The asymptotic strain- 
energy release rate can then be readily obtained by 
considering the changes in elastic-strain energy between 
the split and unsplit configurations [22]. This can be 
illustrated for a split originating from a notch of depth 
c in the side of the specimen (Fig. 2a). Except for a 
small region near the tip of the split, the material 
between the split and the free surface is unstressed. 
The material in the same region was under a uni- 
form tension equal to the applied stress, o-~, before 
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Figure 1 Delamination at interfaces: (a) a composite material under 
an applied load (b) a thin film under residual tension supported on 
a substrate. 

delamination occurred. The change in the elastic 
energy of the system (in plane stress) is, therefore [22] 

2 0-~ 
u - c b /  (l) 

2E 

where b is the width of the specimen, l the length of the 
split and E Young's modulus. Since the applied stress 
does no work as the delamination advances, the 
strain energy release rate is defined as 

10U 
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which then yields 
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An exactly analogous calculation for a central notch 
of length 2c (Fig. 2b) yields the same value for the 
asymptotic value for fr if delamination occurs from 
both ends of the notch. 

(a) 

O~ Delamination 

These simple calculations do not allow the separate 
mode-I and -II components to be determined. There 
appears to be a danger that, because of the loading, 
the problem may be construed to be one of pure 
mode-II [23]. This is incorrect. Unless it is clear 
that there is either perfect symmetry or perfect anti- 
symmetry with respect to a crack tip it must always 
be assumed that a crack is subject to mixed-mode 
conditions. The asymptotic values of the stress- 
intensity factors for the problem of an edge notch 
can be obtained directly from results derived for the 
geometry shown in Fig. 3 [24]. This geometry consists 
of a semi-infinite plane with a sub-surface semi-infinite 
crack parallel to the free surface at a depthc. There is 
an applied load of P per unit depth combined with a 
bending moment of M per unit depth acting on the 
"arm" of material between the crack and the free 
surface. The stress-intensity factors are given by [24] 

KI = 0 . 4 3 4 P c  -I/2 + 1 . 9 3 4 M c  -3/2 (4a) 

K~I = 0 . 5 5 8 P c  - v 2 -  1 . 5 0 3 M c  -3/2 (4b) 

Superposition (Fig. 4) shows that the asymptotic 
stress-intensity factors for the problem of a long split 
originating from an edge notch in a plate subject to a 
uniform tension o% are given by Equation 4 with 
M = 0 a n d P  = ao~c 

K~ = 0.434a~ x/~ (5a) 

K, = 0.558a~ ~ (5b) 

When the delamination is small in comparison to 
the length of the notch, stress-intensity factors can be 
calculated by the boundary-element method [25, 26]. 
The results for delamination lengths, l, greater than 
0.01 of the initial crack length are plotted in Fig. 5. 
It should be noted that the initial portion of the 
delamination is stable until it reaches the asymptotic 
conditions [11]*. 

Equation 4 can also be used to determine the 
asymptotic stress-intensity factors for the delami- 
nation that may occur when a beam of depth h which 
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Figure 2 Two important geometries for delamination in 
composites: (a) from an edge crack, (b) from a central 
notch. 

*The solutions for the problem of  a central crack in an infinite plane can be found in a paper by Vitek [27]. It should be noted that K~ is 
negative once the delamination is more than about one eighth of  the original crack length. This suggests that the extensive delamination often 
observed in a strip of  finite width is strongly influenced by the presence of free boundaries. 
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Figure 3 Semi-infinite sub-surface crack with an applied load P and 
a bending moment  M per unit thickness. 

contains a shallow edge notch of depth c(c ~ h) 
is subject to a pure bending moment of T per unit 
thickness (Fig. 6). This analysis is applicable when 
delamination is limited to the inner span of a four- 
point bend specimen. T is then related to the load 
applied to the specimen, F, and the distance between 
the inner- and outer-loading points, L 

T = FL/2 (6) 

Before delamination occurs, the average load on the 
"arm" of material between the plane of the split and 
the free surface is given by simple beam theory as 

P = ~ -  1 -  (7) 

The stress varies linearly across the beam so that the 
effective bending moment on the "arm" is 

c 3 
M = ~ T (8) 

Consequently, superposition and the use of Equation 

4 yield the asymptotic stress-intensity factors for long 
delaminations 

K~ = Th 3 / 2 ( h ) ~ / 2 ( 2 .6 0 - O .6 7 0 h )  (9a) 

K .  = Th -3/2 (3.35 - 4.85 (9b) 

provided that c/h < 0.1. Numerical calculations are 
required for geometries in which the notch is deeper. 
These have been done by Charalambides et al. [5] their 
results suggest the following expressions are valid 
when c/h >1 0.2. 

KI = Th 3/2 1 " c/h 0.706 + 3.68 

KH = T h  -3/2 - -  

(10a) 

! (0.4+ 
1 c/h 

(10b) 

3. D i s c u s s i o n  
3.1. General concepts  
The fracture mechanics of a crack lying in a plane of 
weakness and subject to a normal tensile stress (Fig. 7a) 
is very straight forward. If the mode-I stress-intensity 
factor, K~, exceeds a critical value for the interface, 
K~i, then the crack will extend. An exactly equivalent 
criterion is that the strain-energy release rate, f#, 
should be greater than or equal to the interface tough- 
ness, % ,  where 

E% = KZci (11) 

in plane stress. 
The problem is much more complex if a shear stress 

acts upon the crack. There can then be a mode-II 
component of the stress-intensity factor at the crack 
tip (Fig. 7b), and an associated tendency for the crack 
to extend out of the interface and into the matrix [28], 
It appears that K.  acts to divert the path of the crack 
to one for which Kn = 0 [24, 29-31]. The failure 
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Figure4 Superposition illustrating how the 
geometry of Fig. 3 is appropriate for determining 
the asymptotic stress-intensity factors in the prob- 
lena of delamination from an edge crack. (Fig. 4b 
does not  contribute to K l or K H.) 
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Figure 5 Stress-intensity factors at the tip of  a delamination crack 
in a homogeneous material. (- - asymptotic limit). 

criterion could then be a simple one of  Kj or fr exceed- 
ing critical values (Kicm or fgcm respectively) for the 
matrix. 

If the interface is sufficiently "weak" relative to the 
matrix, the crack will be confined to the plane of the 
interface. Under these conditions the trajectory of 
the crack is prescribed, but the possibility that the 
mode-II component has some influence on the failure 
criterion cannot be ignored. There is currently no real 
understanding of this true mixed mode problem. In 
practice, the relevant failure criterion appears to lie 
somewhere between two extremes [32-33]. In one limit 
only the opening mode contributes to the crack 
propagation which is assumed to occur when 

K~ ~> K~ci (12a) 

KH has no influence. The other limit is one in which the 
critical strain-energy release rate is constant, so that 
crack propagation occurs when 

K 2 + K 2, /> E~ffci (12b) 

A recent study [34] suggests that under mixed-mode 
loading the critical energy release rate of an interface 
is a function of  KH/K~ ratio, depending on the rough- 
ness of  the interface. 

Whether a crack stays in an interface under mixed- 
mode loading depends upon the relative "strengths" 
of the interface and the matrix, and upon the mag- 
.nitudes of K~ and KH. This is discussed at greater 
length in the following section. In this discussion a 
failure criterion must be assumed. In the absence of  
more certain knowledge, the criterion chosen is that 
(for the range of K~/K, pertinent for this problem) the 
interface and matrix will fail when the strain-energy 
release rate exceeds f#~ and fq~m respectively. The 
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Figure 6 Delamination in a four-point bend specimen, T = FL/2. 
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Figure 7 Cracks in interfaces: (a) subject to mode-I loading 
(b) subject to mixed-mode loading. 

following analysis can be readily adapted for any 
other failure criterion. 

3.2. In i t ia l  k i n k i n g  
There are two directions in which a surface crack may 
propagate when it reaches an interface. Depending 
upon the stress level and the relative "strengths" of the 
interface and matrix, the crack may either propagate 
under pure mode-I loading into the substrate, or it 
may kink at 90 ~ and grow along the interface (Fig. 2a). 
The stress-intensity factor at the crack tip is given by 
[23] 

K h = 

Consequently, unless 

1.12crffrc) 1/2 

2.0o~/-~ (13) 

the crack cannot extend into the matrix. 
Approximate conditions under which the crack may 

kink and grow up the interface can be obtained from 
the results of Cotterell and Rice [31]. The stress- 
intensity factors at the tip of an infinitesimal kink 
inclined at an angle :~ to the main crack (Fig. 8) are 
approximately 

KI = c11kl + cl2k2 (15a) 

Stress-intensity 
i kl factors K I 

and K]I at the 
k2 .-" ( t ip of the kink 

Figure 8 Geometry of a kinked crack. 
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KII = e21k 1 q- c22k 2 (15b) 

where k~ and k 2 are  the stress-intensity factors acting 
on the main crack and, 

cll = �88 + cos3~/2) 

CI 2 __ 3 (sin cr + sin 3e/2) 

c21 = �88 (sin ~/2 + sin 3cr 

c22 = �88 + 3cos3~/2) 

In the present problem, ~ = 90 ~ , k2 = 0 and k~ is 
given by Equation 13. /s and K.  at the tip of an 
infinitesimal kink at the interface are then given by 

KI2 = K I I  2 ~ 0.71ao~ ~ (16) 

(which is in good agreement with extrapolation from 
the results of the boundary-element method (Fig. 5)). 
Therefore, assuming a failure criterion of ~ = con- 
stant, the crack cannot propagate up the interface 
unless 

Initial - 
Crack 

am >~ 1.0 (17) 

A comparison of Equations 14 and 17 suggests 
that if 

~cm > 4~c, (18) 

the stress required for delamination will be reached 
before the stress required to propagate the crack 
across the interface. It should be noted that even if this 
criterion is not satisfied, the crack may be stopped by 
the interface if local debonding occurs ahead of the 
crack [1]. Dynamic effects may also be significant in 
determining the influence of the interface [35]. 

If tensile tests are conducted to measure the apparent 
fracture toughness of specimens, different values 
would be obtained if the notch is oriented along the 
interface rather than perpendicular to it. Tests in 
which the notch is aligned with the interface would 
yield the true value of Klc~ (the fracture toughness of 
the interface). The other tests would yield either Klcm~ 

or a quantity involving the applied stress and notch 
size required for delamination. If  the constant ~c 
failure criterion is used, then the magnitude of the 
quantity aoo x/c required to initiate delamination will 
be given by Equation 17. The apparent fracture 
toughness is then 

/(ca = 1.12 ~ [1.0(E(qr 1/2] ~ 2Kioi (19) 

In a practical test there might be some ambiguity 
about the exact location of the precursor crack tip, 
should it not reach the interface, K~cm would be 
measured. Alternatively, the ratio of K~a/K~oI would 
be greater than two if some delamination occurred 
during the process of introducing the crack. However, 
reported values for this ratio appear to be even higher, 
which suggests that other effects such as elastic 
anisotropy are important [13]. 

3.3. Cracking the matrix 
Experiments on some composite systems [13, 36, 37] 
(wood [13] and some A1-Li alloys [37] being particular 

Figure 9 Schematic illustration of the type of failure seen 
sometimes, for example, in wood [13] where the crack grows along 
the interfaces and across grains. 

examples) occasionally show failure of the type 
illustrated schematically in Fig. 9. Delamination 
occurs from the initial notch, but eventually the split 
breaks out of the interface and crosses another ply 
or grain before causing further delamination. The 
process may be repeated until the crack has crossed 
the specimen and failure occurs. It is, therefore, of 
interest to discuss the conditions under which the 
crack may leave the interface. 

When the delamination is long and originates from 
a shallow edge notch in a tensile specimen (Fig. 2a), 
the values of kl and k 2 in Equation 15 are given by 
Equation 5. A kink which deflects into the matrix at 
an angle of approximately 56.6 ~ will have no mode-II 
component, and the strain-energy release rate will be 
equal to 0.83a2c/E. Consequently, for the crack to 
extend into the matrix (Equations 5 and 15) 

a ~ > /  1.1 ( f f - ~ )  '/2 (20) 

If alternatively, the split were to continue up the 
interface, the applied load a~ would have to be such 
that (Equation 3) 

Consequently, the crack will deviate into the matrix if 

adci > 0.60Ncm (22) 

Comparison of Equations 18 and 22 shows that if 
delamination is induced from a sharp surface crack, 
an approach based solely on fracture mechanics 
predicts that the crack will not leave the interface. 
Since KI/K. does not change substantially as the 
interface crack develops (Fig. 5), this interpretation 
would not be changed by the adoption of anything but 
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Figure 10 Compar ison  between the strain-energy release rates of  an 
interface crack and of a crack starting to grow in the matrix at an 
angle such that K ,  = 0. 

a most unlikely failure criterion. Such a criterion 
would have to entail a rapid change in (r over the 
range KI/K. = 1 to Kx/K, = 0.78. 

There are conditions under which matrix cracking 
could follow delamination if, for example, some 
critical event causes delamination of the interface 
ahead of  the initial crack [1]. Even under these 
circumstances, Fig. 10 shows that there is a very 
limited range of the ratio Nci/~qcm for which delamina- 
tion would precede matrix cracking. 

There is some evidence from recent work on 
ceramic composites [38] and model systems of alumina 
bonded with a thin layer of  a second material [39, 40] 
that statistical effects may play an important  role. It 
appears that the matrix sometimes fails from pre- 
existing flaws that propagate  after the delamination 
process. Delamination may occur at a relatively low 
load, and the matrix may then fail upon a further 
increase in load. Alternatively, it appears that in some 
cases the interface may arrest the initial crack, and 
then a second crack may propagate  on the other side 
of  the interface in response to the shed load [40]. In 
general, the two cracks would not be co-linear so that 
the final stage of deformation might involve interaction 
between them and consequent failure of  the interface 
[40]. 

4. Conclusions 
Some analytical results for delamination caused by 
geometrical discontinuities at the surface of a semi- 
infinite plane have been presented. The results are 
pertinent to problems which are elastically homo- 
geneous but contain a "weak"  interface. Conditions 
for determining whether delamination will occur 
depend upon the relative toughnesses of  the interface 
and matrix material, as well as the stress levels and 
geometry. It  has been shown that, from a purely 
fracture mechanics point of  view, once delamination 
has been initiated there will be no tendency for the 
crack to leave the interface while it remains in a region 
of constant stress. It is possible, though, that statistical 
effects could provide an explanation as to why the 
crack is sometimes observed to deviate from the 
interface. 
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